Электродвигатель асинхронный: схемы звезда треугольник

Содержание:

Схемы соединений обмоток треугольник и звезда для чайников.

Наиболее распространенный вопрос у начинающих изучения устройства трансформаторов или иных электротехнических устройств это «Что такое звезда и треугольник?». Чем же они отличаются и как устроены, попробуем разъяснить в нашей статье.

Рассмотрим схемы соединений обмоток на примере трехфазного трансформатора. В своем строении он имеет магнитопровод, состоящий из трёх стержней. На каждом стержне есть две обмотки – первичная и вторичная. На первичную подается высокое напряжения, а со вторичной снимается низкое напряжение и идет к потребителю. В условном обозначении схема соединений обозначается дробью (например, Y⁄∆ или Y/D или У/Д), значение числителя – соединение обмотки высшего напряжения (ВН), а значение знаменателя – низшего напряжения (НН).

Каждый стержень имеет как первичную обмотку так и вторичную (три первичных и три вторичных обмотки). У каждой обмотки есть начало и конец. Обмотки можно соединить между собой способом звезда или треугольник. Для наглядности обозначим вышеперечисленное схематически (рис. 1)

При соединении звездой, концы обмоток соединяются вместе, а из начал идут три фазы к потребителю. Из вывода соединений концов обмоток, выводят нейтральный провод N (он же нулевой). В итоге получается четырёх — проводная, трёхфазная система, которая часто встречается вдоль линий воздушных электропередач.(рис. 2)

Преимущества такой схемы соединения в том, что мы можем получить 2 вида напряжения: фазное (фаза+нейтраль) и линейное. В таком соединении линейное напряжение больше фазного в √3 раз. Зная, что фазное напряжение дает нам 220В, то умножив его на √3 = 1,73, получим примерно 380В – напряжение линейное. Но что касается электрического тока, то в этом случае фазный ток равен линейному, т.к. что линейный, что фазный токи одинаково выходят из обмотки, и другого пути у него нет. Так же стоит отметить что только в соединении звезда имеется нейтральный провод, который является «уравнителем» нагрузки, чтобы напряжение не менялось и не скакало.

Рассмотрим теперь соединение обмоток треугольником. Если мы конец фазы А, соединим с началом фазы В, конец фазы В соединим с началом фазы С, а конец фазы С соединим с началом фазы А, то получим схему соединения обмотки треугольником. Т.е. в этой схеме обмотки соединены последовательно. (рис. 3)

В основном такая схема соединения применяется для симметричной нагрузки, где по фазам нагрузка не изменяется. В таком соединении фазное напряжение равно линейному, а вот электрический ток, наоборот, в такой схеме разный. Ток линейный больше фазного тока в √3 раз. Соединение обмотки треугольником обеспечивает баланс ампер-виток для тока нулевой

последовательности. Простыми словами, схема соединения треугольником обеспечивает сбалансированное напряжение.

Подведем итоги. Для базового определения схем соединения обмоток силовых трансформаторов, необходимо понимать, что разница между этими соединениями состоит в том, что в звезде все три обмотки соединены вместе одним концом каждой из обмоток в одной (нейтральной) точке, а в треугольнике обмотки соединены последовательно. Соединение звезда позволяет нам создавать два вида напряжения: линейное (380В) и фазное (220В), а в треугольнике только 380В.

Выбор схемы соединения обмоток зависит от ряда причин:

  • Схемы питания трансформатора
  • Мощности трансформатора
  • Уровня напряжения
  • Асимметрии нагрузки
  • Экономических соображений

Так например, для сетей с напряжением 35 кВ и более выгодно соединить обмотку трансформатора схемой звезда, заземлив нулевую точку. В данном случае получится, что напряжение выводов трансформатора и проводов линии передачи относительно земли будет всегда в √3 раз меньше линейного, что приведёт к снижению стоимости изоляции.

На практике чаще всего встречаются следующие группы соединений: Y/Y, D/Y, Y/D.

Группа соединений обмоток Y/Y (звезда/звезда) чаще всего применяется в трансформаторах небольшой мощности, питающих симметричные трёхфазные электроприборы/электроприемники. Так же иногда применяется в схемах большой мощности, когда требуется заземление нейтральной точки.

Группа соединения обмоток D/Y (треугольник/звезда) применяется, в основном в понижающих трансформаторах больших мощностей. Чаще всего трансформаторы с таким соединением работают в составе систем питания токораспределительных сетей низкого напряжения. Как правило, нейтральная точка звезды заземляется, для использования как линейного, так и фазного напряжений.

Группа соединений обмоток Y/D (звезда/треугольник) используется, в основном, в главных трансформаторах больших силовых станций и подстанций, не служащих для распределения.

Какую схему выбрать и какая лучше?

Итак, как соединить обмотки звездой и треугольником мы разобрались, но здесь как раз и начинается «все самые интересные вопросы», причем эти вопросы у людей возникают чаще всего либо при подключении трёхфазного двигателя к однофазной сети, либо при подключении двигателя к частотному преобразователю с однофазным входом и линейными 220В на выходе и в других ситуациях.

Возможность изменения схемы соединения обмоток нужна для того, чтобы один и тот же двигатель мог эксплуатироваться в электросетях с различным напряжением.

Какую схему лучше выбрать? Вопрос не корректный, нужно соединять обмотки в ту схему, номинальное напряжение которой соответствует напряжению в электросети. Эта информация указана на шильдике электродвигателя.

Если на шильдике вашего двигателя указано как на фото выше «Δ/Y 220/380» — это значит что если линейное напряжение в питающей сети 220В – нужно соединять обмотки треугольником, если 380В – звездой. Если вы будете его подключать к однофазной сети 220В с конденсаторами – обмотки также соединяются треугольником.

Если на шильдике указано только одно напряжение и значок схемы (см. рисунок ниже), то возможности изменить схему соединения нет, и в брно, скорее всего, выведено будет 3 провода.

Встречаются и двигатели, которые в сети 380В работают, соединенными по схеме треугольника, схема звезды в этом случае рассчитана на работу в сети 660В, что вы можете наблюдать на следующей фотографии.

Но зачастую такие двигатели используются для пуска с переключением со звезды на треугольник, это делают для понижения пусковых токов.

В этом случае напряжение 380В подаётся сначала на обмотки соединенные по схеме звезды, так как номинальное напряжение для этой схемы 660В двигатель в момент пуска питается от пониженного напряжения и к каждой из обмоток прикладывается всего по 220В.

Когда обороты двигателя возрастают, происходит переключение на треугольник. И уже к каждой обмотке прикладываются их номинальные 380В.

Схема подключения электродвигателя с переходом со звезды на треугольник при пуске

Что будет если перепутать звезду и треугольник?

Чтобы ответить на этот вопрос вспомним формулы мощности трёхфазной нагрузки:

Для упрощения представим, что у нас есть сеть с каким-то определенным напряжением, пусть это будет 220/380 вольт, а также есть 3 лампы накаливания с номинальным напряжением 220В. И еще раз посмотрим на рисунок с распределением напряжений и токов в звезде и треугольнике.

Так как линейное напряжение у нас 380В, а в «звезде» фазное в 1.73 раза ниже линейного, то делаем вывод, что для работы в номинальном режиме нужно подключить эти лампочки звездой, тогда к каждой из них будет приложено 220В.

Теперь соединим их в треугольник, и что получится? Первое что бросается в глаза – к каждой лампе приложено уже 380В вместо 220В номинальных.

Несложно догадаться, что в этом случае наши лампочки просто сгорят, то же самое произойдет и с обмоткой двигателя.

Что при этом происходит с мощностью?

Если питающее напряжение и нагрузка неизменны, то при переключении со звезды на треугольник мощность, выделяемая на этой самой нагрузке, возрастёт в 3 раза. Это происходит потому, что напряжение на каждой лампе увеличилось в 1.73 раза, за ним настолько же вырос и ток.

Формулы для вычисления мощности в обоих случаях одинаковые, но цифры в них различаются, давайте проведем 1 расчет для примера.

Допустим, ток нагрузки в схеме звезды у нас был 1А, тогда полная мощность в звезде равна:

При этом мощность одной лампы в этом случае равна 220 ВА.

В треугольнике к каждой лампе приложено напряжение в 1.73 раза выше – 380В, соответственно и ток через лампу (фазный ток)

возрастет на столько же. При этом не забывайте, чтолинейный ток в звезде и так будет в 1.73 раза больше, чем фазный. Найдем полную мощность по трём фазам:

S=√3*Uл*Iл=1.73*380В*(1.73А*1.73) = 1.73*380В*3А=1972 ВА

А на одной лампе выделится мощность равная:

Но это не значит, что при соединении по схеме треугольника двигатель будет выдавать в 3 раза большую мощность, при питании от номинального для этой схемы напряжения двигатель будет выдавать свою номинальную мощность.

Источник

Теория и схемы

Чтобы избежать путаницы давайте рассматривать этот вопрос на примере трёхфазного асинхронного электродвигателя с короткозамкнутым ротором как самого распространенного из электрических машин в быту и на производстве. Как правило, у такого двигателя 3 обмотки, также встречаются многоскоростные двигатели и там количество обмоток больше трёх, но кратное этому числу.

У каждой обмотки есть начало и конец, а на схеме начало обмотки обычно обозначается точкой.

Но питающих провода в трёхфазной сети у нас 3 или 4. Отсюда возникает вопрос: «Как правильно соединить шесть концов обмоток с тремя питающими проводами?». Вот здесь как раз и всплывают эти «геометрические фигуры» — звезда и треугольник.

Итак, звезда и треугольник – это названия схем соединения потребителей в трёхфазной электросети как обмоток электродвигателей, трансформаторов, так и любой другой нагрузки.

19.3. Запуск двухскоростного двигателя с переключающимися полюсами без инверсии вращения

Электрические характеристики элементов контроля и защиты необходимые для выполнения этого типа запуска, как минимум должны быть:

  • Контактор К1, для включения и выключения двигателя на маленькой скорости (PV). Мощность должна быть такой же либо превышать In двигателя в треугольном соединении и с категорией обслуживания АС3.
  • Контакторы К2 и К3, для включения и выключения двигателя на большой скорости (GV). Мощность этих контакторов должна быть такой же либо превышать In двигателя соединенного двойной звездой и категориеи обслуживания АС3.
  • Термореле F3 и F4, для защиты от перегрузок на обоих скоростях. Каждый из них будет измерять In, употребляемый двигателем на защищаемой скорости.
  • Предохранители F1 и F2, для защиты от К.З. должно быть типа аМ и мощностью такой же или превышающей максимальное In двигателя, в каждой из своих двух скоростей.
  • Предохранитель F5, для защиты цепей контроля.
  • Система кнопок, с простым прерывателем остановки S0 и двумя двойными прерывателями движения S1 и S2.

Перейдем к описанию в краткой форме процесса запуска, как на малой скорости, так и на большой:

  • а) запуск и остановка на маленькой скорости (PV).
  • Запуск путем нажатия на S1.
  • Замыкание контактора цепи К1 и запуск двигателя соединенного треугольником.
  • Автопитание через (К1, 13–14).
  • Открытие К1, которое действует как шторка для того, чтобы хотя запущен в движение S2, контакторы большой скорости К2 и К3 не были активизированы.
  • Остановка путем нажатия на S0.
  • б) запуск и остановка на большой скорости (GV).
  • Запуск путем нажатия на S2.
  • Замыкание контактора звезды К2, которое формирует звезду двигателя при коротком замыкании: U1, V1 и W1.
  • Замыкание контактора К3 (К2, 21–22) таким образом, что двигатель работает соединением в двойную звезду.
  • Автопитание через (К2, 13–14).
  • Открытие (К2, 21–22) и (К3, 21–22), которые действуют как шторки для того, чтобы никогда не закрывался К1 в то время, как закрыты К2 или К3.
  • Остановка путем нажатия на S0.

Соединение звездой и треугольником обмоток

Нейтраль при этом настолько сместится, что одна из ламп будет гореть тускло 50 В , а другая — ярко В. После того, как электрический агрегат разгонится, то есть, скорость его вращения станет соответствовать паспортным данным, произойдет переход на треугольник со звезды. Копирование материалов запрещено.
Двигатели, соединённые по схеме звезда, имеют плавную, мягкую работу, действие электродвигателя ограничено мощностью по сравнению с треугольником, так как её значение больше в полтора раза.
Но будет значительное падение мощности и эффективности его работы.
Как схематически данное действие выглядит? Схема подключения электродвигателя звезда треугольник В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда.
В статоре имеются 3 обмотки, которые сдвинуты относительно друг друга на электрических градуса.
В своем движении электроны наталкиваются на атомы
Предохранители в осветительных сетях уступают место установочным автоматам благодаря тому, что автоматы обеспечивают более совершенную защиту и не требуют замены.
Вопросы 2.1, 2.2, 2.3

Как подключить асинхронный двигатель

Специалист перед подключением электродвигателя всегда поглядит на его шильдик и ознакомится со схемой подключения обмоток электродвигателя.

Шильдик асинхронного электродвигателя выглядит примерно вот
так:

По информации на шильдике мы делаем вывод, что если у нас
напряжение 380 вольт, то подключаем электродвигатель по схеме треугольник. Если
у нас 660 вольт, то по схеме звезда.

Так же бывают двигатели на 220/380 вольт:

По шильдику видно, что если у нас напряжение в сети 220 вольт, то подключаем треугольником. Следовательно, если 380 вольт, то звездой.

Теперь Вы уже хотя бы понимаете, как подключить асинхронный двигатель, ориентируясь на шильдик.

Подключение однофазного асинхронного электродвигателя к сети

Особенность этого подключения заключается в том, что напряжение на рабочую катушку после включения двигателя в сеть должно подаваться постоянно, а на пусковую через фазосдвигающий конденсатор, только на кратковременное время (2–10 сек).

Сделать это несложного, например, с помощью двух тумблеров, один из которых имеет два фиксированных положения (рабочий), а другой без фиксации (пусковой).

На самом деле, всех этих манипуляций при запуске электродвигателя можно избежать, если использовать специально предназначенные для этих целей коммутирующие устройства.

Пусковая кнопка ПНВС

В этом механизме (ПНВС-10) не было бы ничего особенного, если бы не одна фишка. При нажатии кнопки “Пуск” замыкаются все три пары контактов. При отпускании кнопки, крайние пары остаются в замкнутом положении, а средняя пара возвращается в исходное, разомкнутое положение. После нажатия “Стоп” все контакты размыкаются.

На картинке ясно видно, что средняя пара контактов разомкнута, а две крайние пары замкнуты.

Остается подключить пусковую обмотку к крайним клеммам, а пусковую к средней и одной из крайних (общей) клеммам кнопки.

Вот так просто и если хотите, элегантно реализован весь порядок необходимых подключений.

Небольшая цена (120–190 руб), ещё одно из достоинств этого устройства. Некоторых пользователей смущают относительно большие габариты, но поскольку электромотор чаще всего используется в составе какого-то агрегата (станка), что само по себе подразумевает стационарное применение, то размеры блока кнопок, в этом случае, не помеха.

Подключение к сети однофазного двигателя с помощью магнитного пускателя

Поскольку питание, подаваемое на пусковую катушку через несколько секунд после нажатия кнопки “Пуск” нужно отключить, то понадобится два пускателя, а ещё блок, состоящий из двух кнопок, каждая из которых должна иметь две группы контактов с нормально-замкнутыми и нормально-разомкнутыми парами контактов.

Красным цветом обозначены силовые провода. Синим, провода управления.

Получается дороговато, каждый из пускателей с катушкой на 220 В, стоит 700–3000 руб, а ещё такой способ подключения никак не назовешь компактным и простым.

Все эти недостатки компенсируются возможностью коммутировать довольно большую нагрузку.

О подключении трёхфазных электродвигателей к однофазной сети

На мой взгляд, эта тема в наши дни потеряла свою актуальность. Раньше (период СССР), купить однофазный двигатель было проблематично или просто невозможно, а трёхфазники приобретались “по случаю”. Естественно, сразу же возникал вопрос об адаптации такого движка к однофазной сети. Сейчас таких случаев уже почти нет, а покупать дорогой трёхфазный электродвигатель с тем, чтобы подключать его к сети на 220 В. никто в здравом уме не будет.

Как управлять переключениями электродвигателя

Часто для пуска электрического двигателя большой мощности используется переключение соединения «треугольник» в «звезду», это необходимо для снижения параметров тока при пуске. Иными словами, пуск двигателя происходит в режиме «звезда», а вся работа осуществляется на соединении «треугольник». Для этой цели используется контактор на три фазы.

Необходимо при автоматическом переключении выполнить обязательные условия:

  • сделать блокировку контактов от одновременного срабатывания;
  • обязательное исполнение работы, с задержкой времени.

Задержка времени необходима для 100%-го отключения соединения «звезда», иначе при включении соединения «треугольник» возникнет между фазами КЗ. Используется реле времени (РВ), которое выполняет задержку переключения на интервал от 50 до 100 миллисекунд.

Какими способами можно сделать задержку времени переключений

Когда применяется схема «звезда и треугольник», надо обязательно выполнять задержку времени включения соединения (Δ), пока не отключится соединение (Y), специалистами отдается предпочтение трем методам:

  • с помощью контакта нормально разомкнутого в реле времени, который проводит блокировку схемы «треугольник», когда происходит пуск электродвигателя, а момент переключения контролирует токовое реле (РТ);
  • используя таймер в реле времени современного исполнения, который имеет способность переключать режимы с интервалом от 6 до 10 секунд.

Стандартная схема переключения

Классический вариант переключения со «звезды» на «треугольник» специалистами считается надежным способом, он не требует больших затрат, прост в исполнении, но, как и любой другой способ, имеет недостаток — это габаритные размеры РВ (реле времени). Этот тип РВ гарантированно выполняет задержку времени намагничиванием сердечника, а чтобы размагнитить его, требуется время.

Схема смешанного (комбинированного) включения работает следующим образом. Когда оператор включает трехфазный выключатель (АВ), пускатель электродвигателя приготовлен к действию. Через контакты кнопки «Стоп», нормально замкнутого положения и через нормально разомкнутые контакты кнопки «Пуск», которую нажимает оператор, электрический ток проходит в катушку контактора (КМ). Контакты (БКМ) обеспечивают самоподхват силовых контактов и удерживают их во включенном положении.

Реле в схеме (КМ) обеспечивает способность отключения оператором кнопкой «Стоп» электрический двигатель. Когда «фаза управления» проходит через пусковую кнопку, она также проходит замкнутые нормально расположенные контакты (БКМ1) и контакты (РВ) — запускается контактор (КМ2), силовые контакты его обеспечивают подачу напряжения на соединение (Y), начинается раскрутка ротора электродвигателя.

Когда оператор осуществляет пуск двигателя, контакты (БКМ2) в контакторе (КМ2) размыкаются, это порождает неработающее состояние силовых контактов (КМ1), которые обеспечивают питание соединения двигателя Δ.

Токовое реле (РТ) срабатывает практически сразу из-за высоких значений тока, которое включено в цепь токовых трансформаторов (ТТ1) и (ТТ2). Управляющая цепь катушки контактора (КМ2) шунтируется контактами токового реле (РТ), что не дает сработать (РВ).

В цепи контактора (КМ1) блок контактов (БКМ2) размыкается при запуске (КМ2), что не дает сработать катушке (КМ1).

С набором нужного параметра оборотов вращения ротора двигателя контакты токового реле размыкаются, так как пусковой ток уменьшается в управлении контактора (КМ2), одновременно с размыканием контактов, подающих напряжение на соединение обмотки (Y), БКМ2 соединяются, что приводит в рабочее положение контактор (КМ1), а в его цепи блок контактов БКМ2 размыкается, и, как следствие, обесточивается РВ. Преобразование включения «треугольника» в «звезду» происходит после остановки двигателя.

Важно! Временное реле отключается не сразу, а с задержкой, что дает некоторое время в цепи (КМ1) контактам реле быть замкнутым, этим обеспечивается пуск (КМ1) и работа двигателя по схеме «треугольник»

Недостатки стандартной схемы

Несмотря на надежность работы классической схемы переключения с одного соединения на другое соединение электрического двигателя большой мощности, она имеет свои неудобства:

надо правильно делать расчет нагрузки на вал электродвигателя, иначе он будет долго набирать обороты, что не даст быстро сработать токовому реле и затем переключиться на работу по соединению Δ, а также в этом режиме крайне нежелательно долго эксплуатировать двигатель;

Почему сгорит электродвигатель при неправильном соединении

Сейчас я вкратце расскажу, почему электродвигатель, у которого
обмотки на 380/660 треугольник/звезда, нельзя подключать звездой на 380 вольт.

Давайте представим, что в данный момент у нас линейное
напряжение равно 380 вольт.

Что такое линейное напряжение, а фазное? Не знаете? Сейчас
расскажу!

Линейное напряжение – это напряжение между линейными
проводами (фазами), а фазное между линейным проводом и нейтральным.

Дело в том, что при соединении обмоток треугольником, на каждую обмотку приходится линейное напряжение 380 вольт,

а при соединении звездой фазное —  220 вольт.

В итоге нам надо поддерживать требуемую мощность на валу двигателя, а напряжение упало с 380 вольт до 220 вольт (переключили обмотки с треугольника на звезду), что же делать? Ток всё сделает за нас. Он начнёт расти.

Вот пример:

Это формула для однофазной сети, но для понимания сути пойдёт.

P=UI

Где, P- мощность, U-напряжение, I-ток.

Подставим в нашу формулу выдуманные значения и получим следующее: 440=220*2, а теперь уменьшим напряжение в два раза, 440=110*4. Увидели? Напряжение уменьшили в два раза, но, чтобы поддержать заданную мощность у нас вырос ток в два раза.

Как узнать, подключать Звездой или Треугольником?

У трехфазных двигателей АИР есть два номинальных напряжения: 220/380 в и 380/660В, которое указано на шильде. Это основной критерий выбора типа соединения асинхронных двигателей.

Схема подключения электродвигателя Напряжение
Звезда 380 В 660 В
Треугольник 220 В 380 В
  • Электродвигатели 220/380 — современные модели до 112 габарита — 7,5 кВт. Ранее выпускались до 315 габарита — до 132 кВт. Подключение к сети 220В треугольником, к 380В звездой.
  • Электродвигатели 380/660 — встречается в моделях, мощностью от 4 кВт. Схема для 380В — треугольник, для 660В — звезда.

Звезда

«Звезда» предусматривает, что концы обмоток статора замыкаются в одной точке, называемой нулевой точкой или нейтралью, а начала подключаются своим фазам – L. Поэтому двигатели средней мощности принято запускать именно «звездой». Однако при этом невозможно достичь паспортной мощности электродвигателя.

Преимущества схемы подключения «Звезда»:

  • Плавный запуск
  • Более надежная работа двигателя
  • Допускается не длительная перегрузка

Треугольник

При подключении двигателя треугольником конец одной статорной обмотки последовательно соединяется с началом следующей. Однако подключение треугольником значительно увеличивает пусковые токи, что может привести к пробою изоляции; двигатель сильнее нагревается.

Преимущества схемы подключения «Треугольник»:

  • Рабочая мощность соответствует паспортной
  • Увеличенный крутящий момент
  • Улучшенное тяговое усилие

«Звезда-треугольник» (комбинированная)

В случае с мощными электромоторами (начиная с 5,5/3000) важно обеспечить плавный пуск без перегрузок и дальнейшую работу на максимальной мощности. Такие двигатели чаще соединяют по схеме звезда-треугольник

Она подходит только для моделей с пометкой (Δ/Y), которая свидетельствует о возможности соединения двумя способами.

Комбинированная схема подключения обезопасит мотор от высоких пусковых токов и обеспечит паспортную мощность двигателя. Практически выглядит так: электромотор запускается по схеме звезда, а набрав обороты переключается на схему треугольник, либо автоматически, либо с помощью дополнительных устройств. При этом возможны скачки тока.

Запуск по схеме «звезда / треугольник» подходит для моторов с большими маховыми массами, у которых при номинальной скорости сразу набрасывается нагрузка.

Подключение двигателя к однофазной сети 220В через конденсатор

Для использования асинхронного электродвигателя от бытовой электрической сети 220В применяют фазосдвигающий конденсатор. Таким образом достигается мягкий запуск агрегата. Методы подключения конденсаторов к бытовой сети 220В:

  • с выключателем
  • напрямую, без выключателя
  • параллельное включение двух электролитов

Конденсатор для двигателя должен превышать его по напряжению как минимум в 1,5 раза. В противном случае возникнут скачки напряжения, что чревато поломками.

Расчет конденсатора для трехфазной сети

Правильный подбор конденсатора для подключения трехфазного двигателя к однофазной сети предполагает расчет емкости. Ее значение зависит от схемы подключения обмоток и других параметров.

Формула расчета емкости конденсатора для схемы «Треугольник»

Где Емк — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В.

«Звезда» предусматривает, что края обмоток статора заключаются в одной точке, которая называется нулевой либо нейтральной, а начало обмоток — L. Поэтому двигатели небольшой мощности необходимо запускать только «звездой». Но при этом нельзя достигнуть паспортной мощности электрического двигателя.

При соединении двигателя «треугольником» конец первой обмотки последовательно подключается к началу второй. Но такая схема сильно повышает пусковые токи, из-за чего прибор перегревается, и повреждается изоляционный слой.

Соединить при помощи конденсатора

Для применения асинхронного двигателя от обычной электросети 220 В используют фазосдвигающий конденсатор. Благодаря этому агрегат более плавно запускается. Способы подключения конденсаторов к электросети 220 В:

  • с выключателем;
  • без выключателя;
  • с использованием трансформаторов;
  • параллельный запуск двух электролитов.

В любом случае использование вышеописанных схем необходимо, чтобы потребитель мог корректно подключить приборы к любой сети и запустить их без потери напряжения. Также с помощью схем можно увеличить напряжение и понизить пульсацию.

Свойства соединения звезда – треугольник

Разберем свойства соединения обмоток электродвигателя по схемам звезда – треугольник на конкретном примере.

Электродвигатель АИР250S4, 75 кВт, треугольник-звезда и соответствующие им U=380/660В и I=143/82,8А.

Подключаем треугольником на 380В. Полная мощность будет вычисляться по формуле S=U·I·√3.S=380·143·1,73=94008 в·а.

Совет

Если мы подключим этот электродвигатель по схеме звезда к той же сети, то полная мощность будет вычисляться, конечно, по той же формуле S=U·I·√3. Но значения в нее нужно подставлять уже другие.

При переключении на звезду на каждую обмотку пришлось в √3 меньшее напряжение. Соответственно ток тоже уменьшился в √3 раза. И это еще не все.

При схеме треугольник линейный ток был в √3 раза больше фазного, а при переключении стал равным фазному. Т.е. ток уменьшился в итоге в √3·√3=3 раза.

Полная мощность станет равна S=380·143/3·1,73=31336 в·а.

Такая ситуация возникает чаще всего (по нашему опыту) в двух случаях. Во-первых, непонимание электриками вышеупомянутых расчетов.

Во-вторых, в случае когда в эксплуатации был аналогичный двигатель, но с напряжением 220/380В и соответственно схемой подключения треугольник-звезда. Такие двигатели даже большой мощности до сих пор производятся некоторыми заводами. При замене двигателя электрик “на автомате” подключает звездой и двигатель выходит из строя.

Вот цитата из письма одного из предприятий, после того как двигатель вышел из строя из-за неправильной схемы подключения.

Т.е. непонимание свойств соединений и того что указано на шильдике.

Наиболее полную защиту электродвигателя можно обеспечить с помощью термисторных реле. В наших электродвигателях начиная от 160 высоты оси вращения установлены РТС термисторы и контакты выведены в клеммную коробку.

Еще одна важная по нашему мнению информация. При пуске электродвигателя для уменьшения пусковых токов многие используют общеизвестную схему переключения со звезды на треугольник, т.е.

запуск производится на звезде и после набора оборотов происходит переключение на треугольник с помощью реле времени (этот метод описан на множестве сайтов).Такой метод работает, к сожалению, не всегда.

Обратите внимание

Если производится пуск, например центробежного насоса или вентилятора (имеется ввиду правильный пуск на закрытую задвижку), то такая схема успешно работает.

Центробежный насос и вентилятор при пуске на закрытую задвижку потребляют минимальную мощность, которая увеличивается по мере открывания. Но такую схему крайне нежелательно применять в условиях тяжелого пуска (т.е. таких механизмов которые при пуске уже потребляют мощность близкую к номинальной), например пресса, дробилки и др.

Также важно обратить внимание на время переключения, оно не должно быть большим. После того как двигатель набрал обороты нужно сразу производить переключение на треугольник. В большинстве случаев набор оборотов занимает до 5-10 сек., поэтому установка реле на 30-50 сек

грозит выходом из строя электродвигателя

В большинстве случаев набор оборотов занимает до 5-10 сек., поэтому установка реле на 30-50 сек. грозит выходом из строя электродвигателя.

Если у вас есть замечания или мы в чем-то ошибаемся, пишите: electronpo@electronpo.ru

Подводим итоги:

  • При треугольнике линейное и фазное напряжение равны (т.е на обмотку подаётся линейное напряжение), а линейный ток больше фазного в 1,73 раза.
  • При звезде фазное напряжение на обмотке в 1,73 раза меньше линейного, а линейный ток равен фазному.
  • Если нагрузка на валу двигателя не меняется и мы делаем переключение с треугольника на звезду, то ток начнёт расти. Ток растёт, потому что при звезде у нас уменьшилось напряжение на обмотке в 1,73 раза. И, чтобы компенсировать падение напряжения, начинает увеличиваться ток.
  • Звезду применяют для уменьшения пусковых токов. В момент пуска формула мощности не действует, а действует закон Ома. Чем меньше напряжение, тем меньше ток.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector