Модуль деформации бетона

Методы определения прочности по контрольным образцам бетона

Разобравшись с тем, что такое сопротивление материала на сжатие, рассмотрим основные методы определения данного показателя.

Испытание бетона разрушающим способом

Проверка на сжатие проводится, как правило, в аккредитованных строительных лабораториях на поверенном оборудовании. Главное, что для него понадобится − пресс.

Абсолютно ровными гранями образец устанавливается на пресс, включается и начинается проверка. Максимальная нагрузка, при которой началось разрушение образца – это и есть предельное сжатие.

Среднее значение устанавливается по результатам контроля всех отобранных образцов. По конечной цифре определяется, соответствует или нет фактическая прочность нормативным и проектным значениям. После чего она заносится в журнал.

Галерея: процесс испытания разрушающим методом с помощью пресса.

Более подробная инструкция по тестированию бетонных образцов, представлена в видео в этой статье.

Контроль неразрушающими методами

Предыдущий метод обязателен на любом строительном производстве и на любом этапе строительства.

Он считается наиболее достоверным:

Количество участков должно приниматься по программе испытаний, но их должно быть не менее трех. Обычно для объемной железобетонной конструкции берут среднее значение 15 проб.

Это количество зависит от площади, так как точки контроля должны находиться на расстоянии друг от друга 15 мм и от края не менее 50 мм. Идеальные места – между гранулами щебня и крупными раковинами в бетонном теле.

Чтобы провести тестирование конструкции, необходимо:

Чем хорош такой прибор – все данные на нем могут сохраняться на компьютере и архивироваться. В любой момент можно просмотреть предыдущие испытания на компьютере и составить протокол.

Виды раствора

Все подобные материалы подразделяются на несколько видов. Самое интересное заключается в том, что даже не все профессиональные строители знают, что существует несколько разновидностей бетона:

  1. Тяжелые. Такой вид имеет маркировку М100, М150, М200 и т. д. В состав смеси входят плотные наполнители известняк и гранит. Тяжелый бетон является высокопрочным. Он быстро затвердевает, поэтому его главное предназначение — сборные железобетонные конструкции.
  2. Легкие. В такой бетон при изготовлении добавляют легкие пористые наполнители, такие как керамзит, пемза, вспученный шлак и другие. Благодаря такому составу материал становится намного легче, поэтому его используют для возведения несущих стен и других ограждающих сооружений.

От чего зависит величина?

На величину данного показателя значительно влияет наполнитель в материала. Упругость раствора зависит от множества факторов

Первое, на что обращают внимание — наполнитель. Коэффициент напрямую связан с упругостью раствора

Так, высокими показателями являются тяжелые бетоны, наполнителями в которых являются гравий и щебень

Допустимые нагрузки на постройки из такого материала самые высокие, поэтому важно выбирать правильные заполнители. Учитывают не только интенсивность нагрузок, но и частоту

Возраст и время укладки материала играют немаловажную роль в показателях модуля упругости. Крепость материала возрастает на протяжении 50 лет с момента заливки, вне зависимости от внешних температур (до 230 ⁰C). Кроме того, характеристики завися от процесса затвердевания (автоклавный, естественный). Чтобы узнать продолжительность предполагаемых нагрузок, нужно начальный показатель перемножать с показателем: 0,7 для поризованных бетонов, 0,85 — для тяжелых легких и мелкозернистых.

Возраст залитого материала находится в прямопропорциональной зависимости с данным показателем.

Классы бетонного раствора в частной стройке варьируют в пределах В7,5—30 (марки М100—400), но таких прочностных и других характеристик хватает вне зависимости от требований и сложностей конструкций. Показатели модуля увеличивает арматура, так как характеристики арматуры повышают показатели общей конструкции. Методика укладки арматуры в бетон определяется ГОСТом 24452—80.

Посмотреть «ГОСТ 24452-80» или

ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Призменную прочность вычисляют для каждого образца по формуле

где — разрушающая нагрузка, измеренная по шкале силоизмерителя пресса (машины);

— среднее значение площади поперечного сечения, образца, определяемое по его линейным размерам по ГОСТ 10180-78.

5.2. Модуль упругости вычисляют для каждого образца при уровне нагрузки, составляющей 30% от разрушающей, по формуле

где — приращение напряжения от условного нуля до уровня внешней нагрузки, равной 30% от разрушающей;

— соответствующее приращение внешней нагрузки;

— приращение упругомгновенной относительной продольной деформации образца, соответствующее уровню нагрузки и замеренное в начале каждой ступени ее приложения, которое определяют по п. 5.4.

В пределах ступени нагружения деформации определяют по линейной интерполяц

ии.

5.3. Коэффициент Пуассона бетона вычисляют для каждого образца при уровне нагрузки, составляющей 30% разрушающей, по формуле

где — приращение упругомгновенной относительной поперечной деформации образца, соответствующее уровню нагрузки и замеренное в начале каждой ступени ее приложения, которое определяют по п. 5.4

5.4. Значения и определяют по формулам:

где — приращения полных относительных продольных и поперечных деформаций образца, соответствующие уровню нагрузки и замеренные в конце ступени ее приложения; -приращения относительных продольных и поперечных деформаций быстронатекающей ползучести, полученные при выдержках нагрузки на ступенях нагружения до уровня нагрузки

Приращения относительных продольных и поперечных деформаций вычисляют как среднее арифметическое показаний приборов по четырем граням призмы или трем-четырем образующим цилинд

ра.

5.5. Значения относительных деформаций определяют по формулам:

где -абсолютные приращения продольной и поперечной деформаций образца, вызванные соответствующим приращением напряжений;

-фиксированные базы измерения продольной и поперечной деформации образца.

При использовании тензорезисторов и других аналогичных приборов, шкалы которых проградуированы в относительных единицах деформаций, величины определяют непосредственно по шкалам измерительных приборо

в.

5.6. При определении средних значений .призменной прочности, модуля упругости и коэффициента Пуассона в серии образцов предварительно отбраковывают анормальные (сильно отклоняющиеся) результаты испытаний.

Для отбраковки анормальных результатов в серии из трех образцов сравнивают значения призменной прочности, модуля упругости или коэффициента Пуассона в серии, показавших наибольшие и наименьшие значения этих величин со средними их значениями в серии определенными по формуле (10), и проверяют в соответствии с требованием ГОСТ 10180-78 выполнение условий, приведенных в формулах (6) и (7) указанного стандарта. Если эти требования не выполняются, то поступают в соответствии с требованием ГОСТ 10180-78; если условия выполняются, то средние значения призменной прочности бетона, его модуля упругости или коэффициента Пуассона в серии образцов определяют по формуле

где — среднее значение указанных величин в серии образцов данного размера;

— значение указанных величин по отдельным образцам;

— число образцов в сери

и.

5.7. В журнале результатов испытаний должны быть предусмотрены графы в соответствии с требованиями ГОСТ 10180-78, за исключением значения масштабного коэффициента, поскольку этот коэффициент при определении призменной прочности, модуля упругости и коэффициента Пуассона не требуется.

В журнале результатов испытаний должны быть предусмотрены, кроме того, дополнительные графы:

а) состав бетона, жесткость или подвижность смеси, вид, завод-изготовитель и активность вяжущих, вид заполнителей и добавок;

б) модуль упругости бетона отдельных образцов, МПа;

в) средний модуль упругости бетона в серии образцов, МПа;

г) значение коэффициента Пуассона отдельных образцов;

д) среднее значение коэффициента Пуассона в серии образцов;

е) база измерения деформаций, мм;

ж) тип тензометра, примененный для измерения линейных деформаций образца (цена его деления);

з) температура нагрева;

и) температура и относительная влажность воздуха помещения, в котором производились испытания.

В графе «Примечания» должны быть указаны дефекты образцов, особый характер их разрушения, отбраковка результатов испытаний, ее причины и т. д. в соответствии с требованиями ГОСТ 10180-78.

виды, классификация. От чего зависит

Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.

Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.

Испытание на растяжение

Виды и таблицы

Заливка плитного фундамента

  • Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
  • Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.

Наименование бетона Модуль упругости начальный. Сжатие и растяжение Eb*103. Прочность на сжатие в МПа B1 B1,5 B2 B2,5 B3,5 B5 B7,5 B10 B12,5 В15 В20 В25 В30 B35 B40 B45 B50 B55 B60 Тяжёлые Естественный цикл затвердевания — — — 9,5 13 16 18 21 23 27 30 32,5 34,5 36 37,5 39 39,5 40 Тепловая обработка при атмосферном давлении — — — — 8,5 11,5 14,5 16 19 20,5 24 27 29 31 32,5 34 35 35,5 36 Автоклавная обработка — — — — 7 10 12 13,5 16 17 20 22,5 24,5 26 27 28 29 29,5 30 Мелкозернистые А-группа (естественное отвердение) — — — — 7 10 13,5 15,5 17,5 19,5 22 24 26 27,5 28,5 — — — — Тепловая обработка при атмосферном давлении — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 24 24,5 — — — — Б-группа (естественное отвердение) — — — — 6,5 9 12,5 14 15,5 17 20 21,5 23 — — — — — — Теплообработка при автоклавном давлении — — — — 5,5 8 11,5 13 14,5 15,5 17,5 19 20,5 В-группа автоклавного отвердения — — — — — — — — — 16,5 18 19,5 21 21 22 23 24 24,5 25 Лёгкие и горизонтальные — средняя плотность D 800 — — — 4 4,5 5 5,5 — — — — — — — — — — — — 1000 — — — 5 5,5 6,3 7,2 8 8,4 — — — — — — — — — — 1200 — — — 6 6,7 7,6 8,7 9,5 10 10,5 — — — — — — — — — 1400 — — — 7 7,8 8,8 10 11 11,7 12,5 13,5 14,5 15,5 — — — — — — 1600 — — — — 9 10 11,5 12,5 13,2 14 15,5 16,5 17,5 18 — — — — — 1800 — — — — — 11,2 13 14 14,7 15,5 17 18,5 19,5 20,5 21 — — — — 2000 — — — — — — 14,5 16 17 18 19,5 21 22 23 23,5 — — — — Ячеистые, автоклавное твердение, плотность D 500 1,1 1,4 — — — — — — — — — — — — — — — — — 600 1,4 1,7 1,8 2,1 — — — — — — — — — — — — — — — 700 — 1,9 2,2 2,5 2,9 — — — — — — — — — — — — — — 800 — — — 2,9 3,4 4 — — — — — — — — — — — — — 900 — — — — 3,8 4,5 5,5 — — — — — — — — — — — — 1000 — — — — — 6 7 — — — — — — — — — — — — 1100 — — — — — 6,8 7,9 8,3 8,6 — — — — — — — — — — 1200 — — — — — — 8,4 8,8 9,3 — — — — — — — — — — Таблица модулей упругости бетона с учётом СНИП 2.03.01-84

Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.

Рекомендация

При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция

Модуль упругости — от чего он зависит

Бетонные арки. Фото

Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.

Автоклавная обработка

Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.

Приготовление бетона своими руками при строительстве дома

В строительстве домов в частном порядке используется достаточно узкий спектр классности растворов, который в основном от В7,5 до В30, куда включаются такие марки, как М100, М150, М200, М250, М300, М350 и М400. Но этого диапазона вполне достаточно для малоэтажного строительства, даже если там используются плитные фундаменты и возводятся декоративные арки. Как правило, такие растворы делаются в бетономешалке или даже в большом корыте, но зато их цена от этого значительно уменьшается (

Изотропия и анизотропия

Модуль упругости является характеристикой материала, которая описывает силу связи между его атомами и молекулами, однако конкретный материал может иметь несколько различных модулей Юнга.

Дело в том, что свойства каждого твердого тела зависят от его внутренней структуры. Если свойства одинаковы во всех пространственных направлениях, то речь идет об изотропном материале. Такие вещества имеют однородное строение, поэтому действие внешней силы в различных направлениях на них вызывает одинаковую реакцию со стороны материала. Все аморфные материалы обладают изотропией, например, резина или стекло.

Анизотропия — явление, которое характеризуется зависимостью физических свойств твердого тела или жидкости от направления. Все металлы и сплавы на их основе обладают той или иной кристаллической решеткой, то есть упорядоченным, а не хаотичным расположением ионных остовов. Для таких материалов модуль упругости меняется в зависимости от оси действия внешнего напряжения. Например, металлы с кубической симметрией, к которым относятся алюминий, медь, серебро, тугоплавкие металлы и другие, обладают тремя различными модулями Юнга.

Модули прочности

Кроме нормального нагружения, существуют и иные силовые воздействия на материалы.

Модуль сдвига G определяет жесткость. Эта характеристика показывает предельное значение нагрузки изменению формы предмета.

Модуль объемной упругости К определяет упругие свойства материала изменить объем. При любой деформации происходит изменение формы предмета.

Для разных сталей значения указанных модулей приведены в таблице 3.

Таблица 3: Модули прочности для сталей

Наименование стали Модуль упругости Юнга, 10¹²·Па Модуль сдвига G, 10¹²·Па Модуль объемной упругости, 10¹²·Па Коэффициент Пуассона, 10¹²·Па
Сталь низкоуглеродистая 165…180 87…91 45…49 154…168
Сталь 3 179…189 93…102 49…52 164…172
Сталь 30 194…205 105…108 72…77 182…184
Сталь 45 211…223 115…130 76…81 192…197
Сталь 40Х 240…260 118…125 84…87 210…218
65Г 235…275 112…124 81…85 208…214
Х12МФ 310…320 143…150 94…98 285…290
9ХС, ХВГ 275…302 135…145 87…92 264…270
4Х5МФС 305…315 147…160 96…100 291…295
3Х3М3Ф 285…310 135…150 92…97 268…273
Р6М5 305…320 147…151 98…102 294…300
Р9 320…330 155…162 104…110 301…312
Р18 325…340 140…149 105…108 308…318
Р12МФ5 297…310 147…152 98…102 276…280
У7, У8 302…315 154…160 100…106 286…294
У9, У10 320…330 160…165 104…112 305…311
У11 325…340 162…170 98…104 306…314
У12, У13 310…315 155…160 99…106 298…304

Для других материалов значения прочностных характеристик указывают в специальной литературе. Однако, в некоторых случаях проводят индивидуальные исследования. Особенно актуальны подобные исследования для строительных материалов. На предприятиях, где выпускают железобетонные изделия, регулярно проводят испытания по определению предельных значений.

Источник статьи: http://metmastanki.ru/modul-uprugosti-stali-i-metallov

Что влияет на модуль упругости?

  • Прямое воздействие оказывают свойства компонентов в бетоне. Мало того, данная подвластность полностью прямолинейная. У бетонов с небольшим весом этот показатель меньше, а вот у более тяжелых крупнозернистых видов он больше.
  • Классификация бетона. Для выяснения зависимости искомого коэффициента составлена специальная таблица. Обычный потребитель в работе применяет небольшой перечень данных изделий, в связи с этой причиной нет необходимости приводить ее целиком. По известным показателям прочности и модуля понятно, что они пропорционально зависят друг от друга. Причем, данная зависимость не меняется при температурном воздействии ниже 230С. То есть в основном показатели не меняются вообще. Данный нюанс дает возможность контролировать такую характеристику продукта, как упругость, к тому же это выполнимо в одних и тех же классах материала. Это свойство учитывают для того, чтобы знать какой из продуктов может быть установлен. При возведении загородных частных домов применяют довольно маленький перечень бетонных растворов, согласно их классности. Чаще всего этот выбор происходит в диапазоне от В7 до В30, а также М100, М150, М200, М250, М300, М350, М400. Однако данного ассортимента полностью хватает для возведения малоэтажных зданий. Это возможно, даже если в строительстве применяются плитные цоколи, а также формируются арки для декорирования.
  • Возраст бетона. Известна зависимость между повышением искомого коэффициента и периода эксплуатации. По этой причине во время определения показателя в нужный отрезок времени, применяют специальные таблицы. В ней указаны первичные данные, которые необходимо умножить на поправочные модули.
  • Метод переработки компонентов. Большую роль играет то, в каких условиях происходило застывание бетона. Ведь он мог отвердеть естественным образом, во время термического воздействия либо с применением автоклава.
  • Длительность влияния давления. Чтобы выяснить этот показатель, начальный показатель множат на требуемый модуль. Для каждого из типов бетона данный модуль имеет свое значение. Для легких, тяжелых и мелкозернистых – 0,85, для поризованных – 0,7.

Прежде чем изучить другие нюансы, оказывающие воздействие на анализируемую характеристику, необходимо подробнее рассмотреть такое определение, как ползучесть бетона. Данный показатель оказывает большое влияние на стадию разрушения изделия. Ведь при недолгой малой нагрузке материал деформируется, но после прекращения воздействия он возвращается в изначальное состояние.

Данный момент можно детально не разбирать, так как весьма сложно определить вид деформации. Внешне пластичная и упругая деформация никак не отличается. Однако стоит указать, что пластичное разрушение объясняется свойством ползучести бетона. В частности, именно этот параметр берется в расчет при долгом воздействии на материал. Модуль ползучести также имеет свое буквенное обозначение:

Влагосодержание в окружающем воздухе. Данное обстоятельство связано с модулем ползучести. Если необходимо точное значение, то она также узнается из соответствующих таблиц

В таком случае во внимание также берутся температура и уровень радиационного фона.
Наличие металлического каркаса для армирования. Благодаря своему составу, металл не так сильно подвержен разрушениям вследствие воздействия, в отличие от простого бетона.

Необходимо отметить, что каким бы ни был показатель упругости, металл всегда превосходит бетон по прочности. Благодаря такому свойству, использование каркаса для армирования в любом случае повысит собственный показатель упругости у бетонного изделия.

Виды нагрузок

При использовании металлов прилагаются разные нагрузки статического и динамического воздействия. В теории прочности принято определять нагружения следующих видов.

Сжатие – действующая сила сдавливает предмет, вызывая уменьшение длины вдоль направления приложения нагрузки. Такую деформацию ощущают станины, опорные поверхности, стойки и ряд других конструкций, выдерживающих определённый вес. Мосты и переправы, рамы автомобилей и тракторов, фундаменты и арматура, – все эти конструктивные элементы находятся при постоянном сжатии.

Растяжение – нагрузка стремится удлинить тело в определенном направлении. Подъемно-транспортные машины и механизмы испытывают подобные нагружения при подъеме и переноске грузов.

Читать также: Мешалка для раствора на дрель

Сдвиг и срез – такое нагружение наблюдается в случае действия сил, направленных вдоль одной оси навстречу друг другу. Соединительные элементы (болты, винты, заклепки и другие метизы) испытывают нагрузку подобного вида. В конструкции корпусов, металлокаркасов, редукторов и других узлов механизмов и машин обязательно имеются соединительные детали. От их прочности зависит работоспособность устройств.

Кручение – если на предмет действует пара сил, находящихся на определенном расстоянии друг от друга, то возникает крутящий момент. Эти усилия стремятся произвести скручивающую деформацию. Подобные нагружения наблюдаются в коробках передач, валы испытывают именно такую нагрузку. Она чаще всего непостоянная по значению. В течение времени величина действующих сил меняется.

Изгиб – нагрузка, которая изменяет кривизну предметов, считается изгибающей. Мосты, перекладины, консоли, подъемно-транспортные механизмы и другие детали испытывают подобное нагружение.

Расчетные значения

Прочность является определяющей характеристикой бетона. От неё зависят эксплуатационные качества возводимых сооружений, их долговечность и надёжность. Проверка прочности производится в лабораторных условиях по образцам. При проверке прочности на сжатие проверяется марка бетона. Цифровое значение марки является пределом прочности на сжатие, выраженным в Мегапаскалях.

В зависимости от группы предельных состояний выбираются коэффициенты надёжности, которые вводятся, чтобы снизить допустимые нагрузки на конструкцию.

Расчётные сопротивления бетона сжатию в таблицах 1 и 2 вычисляются путём деления величин нормативного сопротивления бетона на коэффициенты надёжности. В формулы для определения прочности вводят коэффициенты, зависящие от характера нагрузок, условий эксплуатации и учитывающие характер разрушений этого типа строений. Расчётные сопротивления бетона осевому сжатию Rb, Rb, ser и осевому растяжению Rbt, Rbt, ser приводятся в таблицах 1 и 2. Характеристики предельных состояний первой группы приводятся в таблице 2, а второй группы — в таблице 1.

Таблица 1.

Таблица 2.

Определение и формула коэффициента Пуассона

Обратимся к рассмотрению деформации твердого тела. В рассматриваемом процессе происходит изменение размеров, объема и часто формы тела. Так, относительное продольное растяжение (сжатие) объекта происходит при его относительном поперечном сужении (расширении). При этом продольная деформация определена формулой:

где — длина образца до деформации, — изменение длины при нагрузке.

Однако, при растяжении (сжатии) происходит не только изменение длины образца, но и при этом меняются поперечные размеры тела. Деформация в поперечном направлении характеризуется величиной относительного поперечного сужения (расширения):

где — диаметр цилиндрической части образца до деформации (поперечный размер образца).

ОПРЕДЕЛЕНИЕ

Коэффициентом Пуассона называют абсолютную величину, равную частному относительного поперечного сужения (расширения) () к относительному продольному удлинению (сжатию) (). Обозначают коэффициент Пуассона обычно буквами: , . Встречаются и другие обозначения. Математически определение коэффициента Пуассона выглядит как:

Эмпирически получено, что при упругих деформациях выполняется равенство:

Основное понятие

Важным параметром при выборе бетона является его упругость, которая показывает способность застывшей массы оставаться в целостности даже под воздействием деформации. Такие данные нужны проектировщикам для того, чтобы возводить прочные и долговечные конструкции.

Безусловно, главным достоинством материала является его твердость. Но из-за ползучести затвердевшая масса в процессе эксплуатации может деформироваться. Все это может происходить из-за воздействия нагрузки, если ее значение превысит допустимые нормы. Поэтому следует учитывать величину приложенной нагрузки и значение коэффициента ползучести, из-за которых структура затвердевшего изделия постепенно меняется.

Детальное определение

Приложим к однородному стержню растягивающие его силы. В результате воздействия таких сил стержень в общем случае окажется деформирован как в продольном, так и в поперечном направлениях.

Пусть l и d длина и поперечный размер образца до деформации, а l ′ > и d ′ > — длина и поперечный размер образца после деформации. Тогда продольным удлинением

называют величину, равную ( l ′ − l ) -l)> , а поперечнымсжатием — величину, равную − ( d ′ − d ) -d)> . Если ( l ′ − l ) -l)> обозначить как Δ l , а ( d ′ − d ) -d)> как Δ d , тоотносительное продольное удлинение будет равно величине Δ l l >> , аотносительное поперечное сжатие — величине − Δ d d >> . Тогда в принятых обозначениях коэффициент Пуассона μ имеет вид:

μ = − Δ d d l Δ l . >>.>

Обычно при приложении к стержню растягивающих усилий он удлиняется в продольном направлении и сокращается в поперечных направлениях. Таким образом, в подобных случаях выполнятся 0>»> Δ l l > 0 >>0> 0>»/> и Δ d d 0 > , так что коэффициент Пуассона положителен. Как показывает опыт, при сжатии коэффициент Пуассона имеет то же значение, что и при растяжении.

Для абсолютно хрупких материалов коэффициент Пуассона равен 0, для абсолютно несжимаемых — 0,5. Для большинства сталей этот коэффициент лежит в районе 0,3, для резины он равен приблизительно 0,5.

Существуют также материалы (преимущественно полимеры), у которых коэффициент Пуассона отрицателен, такие материалы называют ауксетиками. Это значит, что при приложении растягивающего усилия поперечное сечение тела увеличивается.

К примеру, бумага из одно

слойных нанотрубок имеет положительный коэффициент Пуассона, а по мере увеличения долимного слойных нанотрубок наблюдается резкий переход к отрицательному значению −0,20.

Отрицательным коэффициентом Пуассона обладают многие анизотропные кристаллы , так как коэффициент Пуассона для таких материалов зависит от угла ориентации кристаллической структуры относительно оси растяжения. Отрицательный коэффициент обнаруживается у таких материалов, как литий (минимальное значение равно −0,54), натрий (−0,44), калий (−0,42), кальций (−0,27), медь (−0,13) и других. 67 % кубических кристаллов из таблицы Менделеева имеют отрицательный коэффициент Пуассона.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector